QST Magazine Product Reviews - Key Measurements Summary - HF-Transceivers or Receivers (page 1/7)

<table>
<thead>
<tr>
<th>Subject of measurement, band: 14 MHz</th>
<th>Transmitter</th>
<th>20 kHz reciprocal mixing dynamic range</th>
<th>2 kHz reciprocal mixing dynamic range</th>
<th>20 kHz blocking gain compression</th>
<th>2 kHz blocking gain compression</th>
<th>2 kHz 3rd-order dynamic range</th>
<th>2 kHz 3rd-order intercept</th>
<th>Transmit 3rd-order IMD typical</th>
<th>Transmit 9th-order IMD typical</th>
<th>5 kHz Transmit bandwidth</th>
<th>10 kHz TX/RX turnaround time</th>
<th>TX/RX turnaround time (TX & RX delay)</th>
<th>Price in USD</th>
<th>Company’s site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min/max of scale</td>
<td>-60/-140 dB</td>
<td>-60/-140 dB</td>
<td>70/140 dB</td>
<td>70/140 dB</td>
<td>50/110 dB</td>
<td>40/35 dB</td>
<td>-20/-35 dB</td>
<td>-20/-70 dB</td>
<td>-55/-95 dB</td>
<td>-110/-150 dB</td>
<td>56 ms</td>
<td>37 ms</td>
<td>5,399</td>
<td>www.yaesu.com</td>
</tr>
</tbody>
</table>

Transceivers/receivers sorted by 2 kHz 3rd-order dynamic range and as equal by 20 kHz 3rd-order dynamic range

<table>
<thead>
<tr>
<th>Transceivers/receivers</th>
<th>20 kHz reciprocal mixing dynamic range</th>
<th>2 kHz reciprocal mixing dynamic range</th>
<th>20 kHz blocking gain compression</th>
<th>2 kHz blocking gain compression</th>
<th>2 kHz 3rd-order intercept</th>
<th>Transmit 3rd-order IMD typical</th>
<th>Transmit 9th-order IMD typical</th>
<th>5 kHz Transmit bandwidth</th>
<th>10 kHz TX/RX turnaround time</th>
<th>TX/RX turnaround time (TX & RX delay)</th>
<th>Price in USD</th>
<th>Company’s site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yaesu FTdx5000D, December 2010</td>
<td>-109 dB</td>
<td>-102 dB</td>
<td>136 dB</td>
<td>136 dB</td>
<td>114 dB</td>
<td>114 dB</td>
<td>+41 dB</td>
<td>+60 dB</td>
<td>-58 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>36 ms</td>
</tr>
<tr>
<td>WINRADICO WR-G3100C, January 2012</td>
<td>N/M</td>
<td>N/M</td>
<td>128 dB</td>
<td>128 dB</td>
<td>107 dB</td>
<td>107 dB</td>
<td>+52 dB</td>
<td>+320 dB</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Elecraft K3S, November 2016</td>
<td>-119 dB</td>
<td>-115 dB</td>
<td>143 dB</td>
<td>143 dB</td>
<td>106 dB</td>
<td>103 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>-55 dB</td>
<td>-62 dB</td>
<td>-95 dB</td>
<td>-145 dB</td>
</tr>
<tr>
<td>Elecraft K3 %, after Synthesizer Upgrade, November 2015</td>
<td>-115 dB</td>
<td>-93 dB</td>
<td>143 dB</td>
<td>135 dB</td>
<td>106 dB</td>
<td>103 dB</td>
<td>+29 dB</td>
<td>+28 dB</td>
<td>-29 dB</td>
<td>-51 dB</td>
<td>N/M</td>
<td>N/M</td>
</tr>
<tr>
<td>FlexRadio FLEX-6700, April 2015</td>
<td>-124 dB</td>
<td>-116 dB</td>
<td>138 dB</td>
<td>128 dB</td>
<td>103 dB</td>
<td>103 dB</td>
<td>+44 dB</td>
<td>+60 dB</td>
<td>+41 dB</td>
<td>+61 dB</td>
<td>N/M</td>
<td>N/M</td>
</tr>
<tr>
<td>Elecraft K3, April 2008</td>
<td>N/M</td>
<td>N/M</td>
<td>139 dB</td>
<td>139 dB</td>
<td>102 dB</td>
<td>102 dB</td>
<td>+26 dB</td>
<td>+26 dB</td>
<td>-27 dB</td>
<td>-53 dB</td>
<td>N/M</td>
<td>N/M</td>
</tr>
<tr>
<td>Kenwood TS-990S, February 2014</td>
<td>-117 dB</td>
<td>-87 dB</td>
<td>138 dB</td>
<td>133 dB</td>
<td>112 dB</td>
<td>101 dB</td>
<td>+44 dB</td>
<td>+60 dB</td>
<td>-39 dB</td>
<td>-56 dB</td>
<td>N/M</td>
<td>N/M</td>
</tr>
<tr>
<td>FlexRadio FLEX-6500, February 2017</td>
<td>-122 dB</td>
<td>-115 dB</td>
<td>130 dB</td>
<td>129 dB</td>
<td>103 dB</td>
<td>101 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>-55 dB</td>
<td>-95 dB</td>
<td>-153 dB</td>
<td>34 ms</td>
</tr>
<tr>
<td>Elecraft IC-7610, October 2018</td>
<td>-127 dB</td>
<td>-113 dB</td>
<td>120 dB</td>
<td>120 dB</td>
<td>101 dB</td>
<td>101 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>-55 dB</td>
<td>-99 dB</td>
<td>-130 dB</td>
<td>50 ms</td>
</tr>
<tr>
<td>Yaesu FTdx3000, April 2013</td>
<td>-106 dB</td>
<td>-82 dB</td>
<td>137 dB</td>
<td>127 dB</td>
<td>110 dB</td>
<td>100 dB</td>
<td>+40 dB</td>
<td>+23 dB</td>
<td>-27 dB</td>
<td>-52 dB</td>
<td>N/M</td>
<td>N/M</td>
</tr>
<tr>
<td>SSB Electronic ZEUS 2S-1, June 2014</td>
<td>-128 dB</td>
<td>-120 dB</td>
<td>129 dB</td>
<td>129 dB</td>
<td>105 dB</td>
<td>105 dB</td>
<td>+31 dB</td>
<td>+31 dB</td>
<td>-34 dB</td>
<td>-60 dB</td>
<td>N/M</td>
<td>N/M</td>
</tr>
<tr>
<td>Hilberting PT-8000A, November 2014</td>
<td>-118 dB</td>
<td>-111 dB</td>
<td>138 dB</td>
<td>138 dB</td>
<td>104 dB</td>
<td>100 dB</td>
<td>+35 dB</td>
<td>+35 dB</td>
<td>-35 dB</td>
<td>-59 dB</td>
<td>N/M</td>
<td>N/M</td>
</tr>
<tr>
<td>Elecraft KX3, December 2012</td>
<td>-120 dB</td>
<td>-114 dB</td>
<td>130 dB</td>
<td>128 dB</td>
<td>103 dB</td>
<td>100 dB</td>
<td>+34 dB</td>
<td>+34 dB</td>
<td>-30 dB</td>
<td>-55 dB</td>
<td>N/M</td>
<td>N/M</td>
</tr>
<tr>
<td>Apache Labs ANAN-8000DLE, April and November 2018</td>
<td>-115 dB</td>
<td>-110 dB</td>
<td>125 dB</td>
<td>125 dB</td>
<td>100 dB</td>
<td>100 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>With Pure Signal: -56 dB & **</td>
<td>With Pure Signal: -60 dB & **</td>
<td>-$95 dB</td>
<td>-136 dB</td>
</tr>
<tr>
<td>Icom IC-8800, November 2017</td>
<td>-122 dB</td>
<td>-108 dB</td>
<td>115 dB</td>
<td>124 dB</td>
<td>103 dB</td>
<td>99 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ELAD FDM-DUO, May 2016</td>
<td>-108 dB</td>
<td>-104 dB</td>
<td>124 dB</td>
<td>106 dB</td>
<td>99 dB</td>
<td>99 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>-70 dB</td>
<td>-88 dB</td>
<td>-141 dB</td>
<td>52 ms</td>
</tr>
<tr>
<td>Transmitter</td>
<td>20 kHz reciprocal mixing dynamic range</td>
<td>2 kHz reciprocal mixing dynamic range</td>
<td>2 kHz blocking gain compression</td>
<td>2 kHz blocking gain compression</td>
<td>20 kHz 3rd-order dynamic range</td>
<td>2 kHz 3rd-order dynamic range</td>
<td>Transmit 3rd order IMD typical</td>
<td>Transmit 9th order IMD typical</td>
<td>5 kHz Transmit 3rd order kepying bandwidth</td>
<td>10 kHz Transmit phase noise</td>
<td>TX/RX turnaround time (TX delay) SSB</td>
<td>Price in USD</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>FlexRadio FLEX-5000A, July 2008</td>
<td>N/M N/M</td>
<td>123 dB 123 dB</td>
<td>99 dB 99 dB</td>
<td>+35 dbm +30 dbm</td>
<td>-54 dB -54 dB</td>
<td>N/M N/M</td>
<td>29 ms 25 ms</td>
<td>$2,799</td>
<td>www.flexradio.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TenTec S99AT Eagle, August 2011</td>
<td>N/M N/M</td>
<td>136 dB 126 dB</td>
<td>98 dB 98 dB</td>
<td>+22 dbm +22 dbm</td>
<td>-28 dB -28 dB</td>
<td>N/M N/M</td>
<td>70 ms 16 ms</td>
<td>$1,795</td>
<td>www.tentec.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kenwood TS-590S, May 2011</td>
<td>N/M N/M</td>
<td>-41 dB ** 121 dB</td>
<td>106 dB 97 dB</td>
<td>+26 dbm +22 dbm</td>
<td>-29 dB -52 dB</td>
<td>N/M N/M</td>
<td>30 ms 14 ms</td>
<td>$1,549</td>
<td>www.kenwood.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perseus SDR, December 2008</td>
<td>N/M N/M</td>
<td>129 dB 129 dB</td>
<td>100 dB 97 dB</td>
<td>+35 dbm +35 dbm</td>
<td>N/A N/A</td>
<td>N/A N/A</td>
<td>N/A N/A</td>
<td>$999</td>
<td>www.microtelecom.it</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apache Labs ANAN-100D, October 2015</td>
<td>-117 dB -109 dB</td>
<td>124 dB 122 dB</td>
<td>97 dB 96 dB</td>
<td>+22 dbm +22 dbm</td>
<td>With Pure Signal: 49 db **</td>
<td>With Pure Signal: 60 db</td>
<td>N/M N/M</td>
<td>240 ms 142 ms</td>
<td>$3,489</td>
<td>www.apache-labs.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEN-TEC 539 Argonaut VI, August 2013</td>
<td>N/M N/M</td>
<td>125 dB 102 dB</td>
<td>106 dB 95 dB</td>
<td>+35 dbm +15 dbm</td>
<td>-28 dB -53 dB</td>
<td>N/M N/M</td>
<td>15 ms 11 ms</td>
<td>$7,179</td>
<td>www.icomamerica.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flex-3000, Oct/Nov 2009</td>
<td>N/M N/M</td>
<td>113 dB 113 dB</td>
<td>95 dB 95 dB</td>
<td>+28 dbm +28 dbm</td>
<td>-30 dB -45 dB</td>
<td>N/M N/M</td>
<td>16 ms 48 ms</td>
<td>$1,699</td>
<td>www.flexradio.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icom IC-7300, August 2016</td>
<td>-114 dB -102 dB</td>
<td>123 dB 123 dB</td>
<td>97 dB 95 dB</td>
<td>N/M N/M</td>
<td>-30 dB -58 dB</td>
<td>-95 dB -129 dB</td>
<td>15 ms 14 ms</td>
<td>$1,500</td>
<td>www.icomamerica.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TenTec Orion-II, September 2006</td>
<td>N/M N/M</td>
<td>136 dB 136 dB</td>
<td>92 dB 95 dB</td>
<td>+20 dbm +21 dbm</td>
<td>-28 dB -52 dB</td>
<td>N/M N/M</td>
<td>30 ms 18 ms</td>
<td>$4,295</td>
<td>www.tentec.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlexRadio FLEX-6400M, February 2019</td>
<td>-122 dB -118 dB</td>
<td>123 dB 123 dB</td>
<td>95 dB 94 dB</td>
<td>N/M N/M</td>
<td>-41 dB **</td>
<td>-55 dB -95 dB</td>
<td>-129 dB 200 ms 47 ms</td>
<td>$2,999</td>
<td>www.flexradio.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlexRadio FLEX-6300, April 2015</td>
<td>-121 dB -116 dB</td>
<td>127 dB 126 dB</td>
<td>92 dB 92 dB</td>
<td>+20 dbm +20 dbm</td>
<td>-30 dB -51 dB</td>
<td>N/M N/M</td>
<td>14 ms 20 ms</td>
<td>$995</td>
<td>www.tentec.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icom IC-7700, October 2008</td>
<td>N/M N/M</td>
<td>125 dB 102 dB</td>
<td>106 dB 95 dB</td>
<td>+35 dbm +35 dbm</td>
<td>-28 dB -53 dB</td>
<td>N/M N/M</td>
<td>15 ms 11 ms</td>
<td>$7,179</td>
<td>www.icomamerica.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icom IC-7410, October 2011</td>
<td>N/M N/M</td>
<td>143 dB ** 111 dB</td>
<td>106 dB 88 dB</td>
<td>+29 dbm +5 dbm</td>
<td>-30 dB -61 dB</td>
<td>N/M N/M</td>
<td>15 ms 45 ms</td>
<td>$1,949</td>
<td>www.icomamerica.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icom IC-7600, November 2009</td>
<td>N/M N/M</td>
<td>122 dB 102 dB</td>
<td>106 dB 88 dB</td>
<td>+31 dbm +13 dbm</td>
<td>-31 dB -48 dB</td>
<td>N/M N/M</td>
<td>16 ms 21 ms</td>
<td>$4,976</td>
<td>www.icomamerica.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icom IC-9100, April 2012</td>
<td>-101 dB -77 dB</td>
<td>142 dB ** 111 dB</td>
<td>108 dB 87 dB</td>
<td>+29 dbm +29 dbm</td>
<td>-29 dB -54 dB</td>
<td>N/M N/M</td>
<td>57 ms 61 ms</td>
<td>$3,650</td>
<td>www.icomamerica.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elecraft KX2, May 2017</td>
<td>-99 dB -102 dB</td>
<td>116 dB 112 dB</td>
<td>93 dB 87 dB</td>
<td>N/M N/M</td>
<td>-36 dB -58 dB</td>
<td>-94 dB -128 dB</td>
<td>40 ms 30 ms</td>
<td>$750</td>
<td>www.elecraft.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icom IC-7800 V2, March 2007</td>
<td>N/M N/M</td>
<td>144 dB ** 117 dB</td>
<td>108 dB 86 dB</td>
<td>+34 dbm +34 dbm</td>
<td>-31 dB -52 dB</td>
<td>N/M N/M</td>
<td>15 ms 10 ms</td>
<td>$12,499</td>
<td>www.icomamerica.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlexRadio FLEX-1500, December 2011</td>
<td>N/M N/M</td>
<td>107 dB 107 dB</td>
<td>100 dB 86 dB</td>
<td>+31 dbm +13 dbm</td>
<td>-22 dB -48 dB</td>
<td>N/M N/M</td>
<td>210 ms 200 ms</td>
<td>$649</td>
<td>www.flexradio.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yaesu FTdx9000MP, July 2010</td>
<td>N/M N/M</td>
<td>137 dB 102 dB</td>
<td>99 dB 85 dB</td>
<td>+28 dbm +7 dbm</td>
<td>With Class A: -17 dB **</td>
<td>With Class A: -75 dB **</td>
<td>N/M N/M</td>
<td>38 ms 32 ms</td>
<td>$11,629</td>
<td>www.yaesu.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TenTec R4020 QRP, February 2011</td>
<td>N/M N/M</td>
<td>84 dB 84 dB</td>
<td>84 dB 84 dB</td>
<td>-10 db -10 db</td>
<td>N/M N/M</td>
<td>N/M N/M</td>
<td>294 ms 284 ms</td>
<td>$249</td>
<td>www.tentec.com</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QST Magazine Product Reviews - Key Measurements Summary - HF-Transceivers or Receivers (page 3/7)

<table>
<thead>
<tr>
<th>Transmitter</th>
<th>Price in USD; over the years prices may vary</th>
<th>Company's site</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Transceivers/receivers sorted by 2 kHz 3rd-order dynamic range and if equal by 20 kHz 3rd-order dynamic range</th>
<th>20 kHz reciprocal mixing dynamic range</th>
<th>2 kHz reciprocal mixing dynamic range</th>
<th>2 kHz blocking gain compression</th>
<th>2 kHz blocking gain compression</th>
<th>20 kHz 3rd-order dynamic range</th>
<th>2 kHz 3rd-order dynamic range</th>
<th>Transmit 3rd-order IMD typical</th>
<th>Transmit 9th-order IMD typical</th>
<th>5 kHz Transmit keying bandwidth</th>
<th>10 kHz Transmit phase noise</th>
<th>TX/RX turnaround time SSB</th>
<th>RX/TX turnaround time (TX delay) SSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yaesu FTdx1200, January 2014</td>
<td>-104 dB</td>
<td>-81 dB</td>
<td>132 dB</td>
<td>123 dB</td>
<td>101 dB</td>
<td>83 dB</td>
<td>+31 dbm</td>
<td>+3 dbm</td>
<td>-32 dB</td>
<td>-50 dB</td>
<td>N/M</td>
<td>N/M</td>
</tr>
<tr>
<td>Yaesu FT-991, November 2015</td>
<td>-103 dB</td>
<td>-75 dB</td>
<td>134 dB</td>
<td>99 dB</td>
<td>100 dB</td>
<td>82 dB</td>
<td>+31 dbm</td>
<td>-1 dBm</td>
<td>-26 dB</td>
<td>-46 dB</td>
<td>N/M</td>
<td>N/M</td>
</tr>
<tr>
<td>Yaesu FT-991A, May 2016</td>
<td>-103 dB</td>
<td>-75 dB</td>
<td>132 dB</td>
<td>99 dB</td>
<td>99 dB</td>
<td>82 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>-30 dB</td>
<td>-48 dB</td>
<td>N/M</td>
<td>32 ms</td>
</tr>
<tr>
<td>TenTec Omni-VII, July 2007</td>
<td>N/M</td>
<td>N/M</td>
<td>137 dB</td>
<td>91 dB</td>
<td>82 dB</td>
<td>+15 dbm</td>
<td>+5.5 dbm</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>18 ms</td>
</tr>
<tr>
<td>Icom IC-R9500, January 2008</td>
<td>N/M</td>
<td>144 dB **</td>
<td>109 dB</td>
<td>81 dB</td>
<td>+32 dbm</td>
<td>-4 dbm</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Yaesu FTdx9000C, March 2006</td>
<td>N/M</td>
<td>129 dB</td>
<td>97 dB</td>
<td>101 dB</td>
<td>78 dB</td>
<td>+35 dbm</td>
<td>+1 dbm</td>
<td>With Class A: +63 dB e</td>
<td>With Class A: +63 dB e</td>
<td>N/M</td>
<td>N/M</td>
<td>35 ms</td>
</tr>
<tr>
<td>Expert SunSDR2 Pro, October 2016</td>
<td>-118 dB</td>
<td>-65 dB</td>
<td>129 dB</td>
<td>107 dB</td>
<td>78 dB</td>
<td>78 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>-50 dB</td>
<td>-57 dB</td>
<td>N/M</td>
<td>69 ms</td>
</tr>
<tr>
<td>Yaesu FT-4500, November 2011</td>
<td>N/M</td>
<td>N/M</td>
<td>134 dB</td>
<td>97 dB</td>
<td>76 dB</td>
<td>+16 dbm</td>
<td>-21 dbm</td>
<td>-25 dB</td>
<td>-50 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>26 ms</td>
</tr>
<tr>
<td>Yaesu FT-950, March 2008</td>
<td>N/M</td>
<td>N/M</td>
<td>128 dB</td>
<td>98 dB</td>
<td>71 dB</td>
<td>+21 dbm</td>
<td>-4 dbm</td>
<td>-35 dB</td>
<td>-56 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>39 ms</td>
</tr>
<tr>
<td>Alinco DX-SR8T, June 2011</td>
<td>N/M</td>
<td>150 dB</td>
<td>83 dB</td>
<td>94 dB</td>
<td>70 dB</td>
<td>+1 dbm</td>
<td>-2 dbm</td>
<td>-28 dbm</td>
<td>-53 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>50 ms</td>
</tr>
<tr>
<td>Yaesu FT-2000D, October 2007</td>
<td>N/M</td>
<td>N/M</td>
<td>136 dB</td>
<td>87 dB</td>
<td>98 dB</td>
<td>69 dB</td>
<td>+26 dbm</td>
<td>+16 dbm</td>
<td>-35 dbm</td>
<td>-65 dbm</td>
<td>N/M</td>
<td>N/M</td>
</tr>
<tr>
<td>Icom IC-7100, July 2014</td>
<td>-103 dB</td>
<td>-84 dB</td>
<td>120 dB</td>
<td>95 dB</td>
<td>68 dB</td>
<td>+13 dbm</td>
<td>-25 dbm</td>
<td>-34 dB</td>
<td>-49 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>22 ms</td>
</tr>
<tr>
<td>Yaesu FT-891, June 2017</td>
<td>-98 dB</td>
<td>-72 dB</td>
<td>131 dB</td>
<td>93 dB</td>
<td>68 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>-50 dB</td>
<td>-49 dB</td>
<td>-85 dB</td>
<td>-116 dB</td>
<td>49 ms</td>
</tr>
<tr>
<td>Icom IC-7200, June 2009</td>
<td>N/M</td>
<td>N/M</td>
<td>140 dB</td>
<td>93 dB</td>
<td>67 dB</td>
<td>+23 dbm</td>
<td>-11 dbm</td>
<td>-32 dB</td>
<td>-58 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>13 ms</td>
</tr>
<tr>
<td>Yaesu FT-450, December 2007</td>
<td>N/M</td>
<td>N/M</td>
<td>134 dB</td>
<td>90 dB</td>
<td>67 dB</td>
<td>+13 dbm</td>
<td>-31 dbm</td>
<td>-30 dbm</td>
<td>-48 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>20 ms</td>
</tr>
<tr>
<td>Yaesu FT-2000, February 2007</td>
<td>N/M</td>
<td>N/M</td>
<td>126 dB</td>
<td>92 dB</td>
<td>64 dB</td>
<td>+16 dbm</td>
<td>-22 dbm</td>
<td>-32 dB</td>
<td>-50 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>15 ms</td>
</tr>
<tr>
<td>Icom IC-7000, May 2006</td>
<td>N/M</td>
<td>N/M</td>
<td>112 dB</td>
<td>86 dB</td>
<td>63 dB</td>
<td>+6 dbm</td>
<td>-27 dbm</td>
<td>-33 dB</td>
<td>-58 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>12 ms</td>
</tr>
<tr>
<td>Yaesu FT-818ND, January 2019</td>
<td>-99 dB</td>
<td>-71 dB</td>
<td>124 dB</td>
<td>93 dB</td>
<td>62 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>-31 dB</td>
<td>-50 dB</td>
<td>-81 dB</td>
<td>-117 dB</td>
<td>25 ms</td>
</tr>
<tr>
<td>Alinco DX-SR8T, October 2014</td>
<td>-88 dB</td>
<td>-72 dB</td>
<td>114 dB</td>
<td>91 dB</td>
<td>60 dB</td>
<td>+17 dbm</td>
<td>-25 dbm</td>
<td>-28 dbm</td>
<td>-47 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>50 ms</td>
</tr>
</tbody>
</table>

Notes

- **Min/max of scale** indicates the minimum and maximum values for the measurements.
- **Transceivers/receivers** are sorted based on 2 kHz 3rd-order dynamic range, and if equal, by 20 kHz 3rd-order dynamic range.
- **Subject of measurement, band:** 14 MHz.
- **Min/max of scale** includes values such as -60/-140 dBc, 70/140 dB, etc.
- **Company's site** links to the manufacturer's website for further information.
<table>
<thead>
<tr>
<th>Subject of measurement, HF</th>
<th>Driving Power</th>
<th>Output Power, CW</th>
<th>3rd harmonic Spurious and harmonic suppression worst case</th>
<th>Transmit 3rd-order IMD</th>
<th>Transmit 5th-order IMD</th>
<th>Transmit 7th-order IMD</th>
<th>Transmit 9th-order IMD</th>
<th>TR switching time key to RF</th>
<th>TR switching time un-key to power off</th>
<th>Weight</th>
<th>Price in USD; over the years prices may vary…</th>
<th>Company’s site</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Alpha 8100, April 2007</td>
<td>50-55 W</td>
<td>1500 W</td>
<td>-55 db</td>
<td>-52 dB</td>
<td>-48 dB</td>
<td>-53 dB</td>
<td>-61 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>31.3 kg</td>
<td>$4,850</td>
<td>www.rfconcepts.com</td>
</tr>
<tr>
<td>2 Ameritron AL-800H, September 1997</td>
<td>41-61 W</td>
<td>1500 W</td>
<td>-50 db</td>
<td>-49 db</td>
<td>-55 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>23.6 kg</td>
<td>$2,295</td>
<td>www.ameritron.com</td>
</tr>
<tr>
<td>3 AlphaPower 91b, September 1997</td>
<td>45-80 W</td>
<td>1500 W</td>
<td>-52 db</td>
<td>-45 dB</td>
<td>-49 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>29.9 kg</td>
<td>$2,798</td>
<td>www.rfconcepts.com</td>
</tr>
<tr>
<td>4 Acom 1000, November 2002</td>
<td>70 W</td>
<td>1000 W</td>
<td>-51 db</td>
<td>-64 dB</td>
<td>-55 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>22 kg</td>
<td>$2,750</td>
<td>www.acom-bg.com</td>
</tr>
<tr>
<td>5 OM Power OM2500A, November 2014</td>
<td>48-60 W</td>
<td>1500 W</td>
<td>-49 db</td>
<td>-63 dB</td>
<td>-64 dB</td>
<td>>-60 dB</td>
<td>-56 dB</td>
<td>10 ms</td>
<td>10 ms</td>
<td>41.7 kg</td>
<td>$7,995</td>
<td>www.om-power.com</td>
</tr>
<tr>
<td>6 QRO Technologies HF-2500DX, September 1997</td>
<td>40-80 W</td>
<td>1500 W</td>
<td>-46 db</td>
<td>-63 dB</td>
<td>-40 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>40.8 kg</td>
<td>$2,895</td>
<td>www.qrotec.com</td>
</tr>
<tr>
<td>7 SPE Expert 1K-FA, September 2009</td>
<td>28-32 W</td>
<td>900 W</td>
<td>-51 db</td>
<td>-62 dB</td>
<td>-63 dB</td>
<td>-49 dB</td>
<td>-56 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>20 kg</td>
<td>$3,850</td>
<td>www.radio-ham.eu</td>
</tr>
<tr>
<td>8 Acom 6000S, August 2015</td>
<td>22-28 W</td>
<td>600 W</td>
<td>>-60 db</td>
<td>-62 dB</td>
<td>-39 dB</td>
<td>N/M</td>
<td>-55 dB</td>
<td>12 ms</td>
<td>23 ms</td>
<td>12 kg</td>
<td>$2,800</td>
<td>www.acom-bg.com</td>
</tr>
<tr>
<td>9 RM Italy HLA305V, April 2016</td>
<td>3.3-14.4 W</td>
<td>200 W **</td>
<td>57-70 db</td>
<td>-60 dB ***</td>
<td>-40 dB</td>
<td>-50 dB</td>
<td>-63 dB</td>
<td>3 ms</td>
<td>4 ms</td>
<td>4.4 kg</td>
<td>$700</td>
<td>www.deengineering.com</td>
</tr>
<tr>
<td>10 Elecraft KPA500, February 2012</td>
<td>30-40 W</td>
<td>500 W</td>
<td>-51 db</td>
<td>-60 dB ^</td>
<td>-53 dB</td>
<td>-46 dB</td>
<td>-54 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>11.8 kg</td>
<td>$2,400</td>
<td>www.elecraft.com</td>
</tr>
<tr>
<td>11 Ten-Tec Centaur Model 411, June 1997</td>
<td>90-100 W</td>
<td>600 W</td>
<td>-48 db</td>
<td>-39 dB</td>
<td>-45 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>18 kg</td>
<td>$750</td>
<td>www.tentec.com</td>
</tr>
<tr>
<td>12 Acom 1500, June 2013</td>
<td>53-73 W</td>
<td>1500 W</td>
<td>>-50 db</td>
<td>-39 dB ^</td>
<td>-39 dB</td>
<td>-50 dB</td>
<td>-55 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>20.5 kg</td>
<td>$4,750</td>
<td>www.acom-bg.com</td>
</tr>
<tr>
<td>13 Ameritron ALS-1300, September 2011</td>
<td>65-100 W</td>
<td>1200 W</td>
<td>>-49 dB</td>
<td>-38 dB</td>
<td>-43 dB</td>
<td>-54 dB</td>
<td>-49 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>6.8 kg</td>
<td>$3,400</td>
<td>www.ameritron.com</td>
</tr>
<tr>
<td>16 Elecraft KXPA100, October 2014</td>
<td>4-8 W</td>
<td>100 W</td>
<td>>-42/-65 dB</td>
<td>-38 dB</td>
<td>-34 dB</td>
<td>-42 dB</td>
<td>-52 dB</td>
<td>3 ms</td>
<td>8 ms</td>
<td>2.4 kg</td>
<td>$750</td>
<td>www.elecraft.com</td>
</tr>
<tr>
<td>17 Hardrock 50, December 2014</td>
<td>2,4-5 W</td>
<td>50 W</td>
<td>>-48 dB</td>
<td>-38 dB</td>
<td>-33 dB</td>
<td>-38 dB</td>
<td>-46 dB</td>
<td>5.2 ms</td>
<td>3.8 ms</td>
<td>1.4 kg</td>
<td>$299</td>
<td>www.hobbypcb.com</td>
</tr>
<tr>
<td>18 Acom 2000A, May 2000</td>
<td>50-60 W</td>
<td>1500 W</td>
<td>>-50 dB</td>
<td>-37 dB</td>
<td>-50 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>35.8 kg</td>
<td>$5,500</td>
<td>www.acom-bg.com</td>
</tr>
<tr>
<td>19 Acom 1010, December 2006</td>
<td>60 W</td>
<td>500 W</td>
<td>>-53 dB</td>
<td>-37 dB</td>
<td>-53 dB</td>
<td>-56 dB</td>
<td>-62 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>18 kg</td>
<td>$2,340</td>
<td>www.acom-bg.com</td>
</tr>
<tr>
<td>20 Emtron DX-16, December 2004</td>
<td>40-60 W</td>
<td>750 W</td>
<td>>-45 dB</td>
<td>-37 dB</td>
<td>-46 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>20 kg</td>
<td>$2,184</td>
<td>www.emtron.com.au</td>
</tr>
<tr>
<td>Subject of measurement, HF</td>
<td>Driving Power</td>
<td>Output Power, CW</td>
<td>Spurious and harmonic suppression 3rd harmonics</td>
<td>Transmit 3rd-order IMD</td>
<td>Transmit 5th-order IMD</td>
<td>Transmit 7th-order IMD</td>
<td>Transmit 9th-order IMD</td>
<td>TR switching time key to RF</td>
<td>TR switching time un-key to power off</td>
<td>Weight</td>
<td>Price in USD; over the years prices may vary…</td>
<td>Company’s site</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Ameritron ALS-1306, January 2016</td>
<td>60-100 W</td>
<td>1100 W</td>
<td>-60 dB</td>
<td>-37 dB</td>
<td>-40 dB</td>
<td>-54 dB</td>
<td>-56 dB</td>
<td>12 ms</td>
<td>29 ms</td>
<td>5.4 kg</td>
<td>$3,000</td>
<td>www.ameritron.com</td>
</tr>
<tr>
<td>Ameritron ALS-600, August 2001</td>
<td>100 W</td>
<td>400 W</td>
<td>-49 dB</td>
<td>-37 dB</td>
<td>-40 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>22 kg</td>
<td>$1,130</td>
<td>www.ameritron.com</td>
<td></td>
</tr>
<tr>
<td>SPE Expert 1.3K-FA, July 2016</td>
<td>25-35 W</td>
<td>1300 W</td>
<td>>-60 dB</td>
<td>-37 dB</td>
<td>-29 dB</td>
<td>-57 dB</td>
<td>-55 dB</td>
<td>13 ms</td>
<td>5 ms</td>
<td>9.5 kg</td>
<td>$4,995</td>
<td>www.radio-hams.eu</td>
</tr>
<tr>
<td>Ten-Tec 418, February 2013</td>
<td>1-10 W</td>
<td>100 W</td>
<td>-52 dB</td>
<td>-37 dB</td>
<td>-38 dB</td>
<td>-57 dB</td>
<td>-57 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>2.5 kg</td>
<td>$785</td>
<td>www.tentec.com</td>
</tr>
<tr>
<td>Tokyo Hy-Power HL-SS0KFX, March 2013</td>
<td>50-80 W</td>
<td>550 W</td>
<td>-55 dB</td>
<td>-36 dB</td>
<td>-43 dB</td>
<td>-50 dB</td>
<td>-57 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>9.5 kg</td>
<td>$3,000</td>
<td>None</td>
</tr>
<tr>
<td>Icom IC-PW1, February 2001</td>
<td>40 W</td>
<td>1000 W</td>
<td>-60 dB</td>
<td>-36 dB</td>
<td>-41 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>25 kg</td>
<td>$5,400</td>
<td>www.icomamerica.com</td>
</tr>
<tr>
<td>Tokyo Hy-Power HL-1.2KFX, June 2008</td>
<td>75-95 W</td>
<td>630 W</td>
<td>-55 dB</td>
<td>-36 dB</td>
<td>-39 dB</td>
<td>-50 dB</td>
<td>-65 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>15 kg</td>
<td>$2,350</td>
<td>None</td>
</tr>
<tr>
<td>Tokyo Hy-Power HL-1.5KFX, September 2007</td>
<td>85 W</td>
<td>900 W</td>
<td>-52 dB</td>
<td>-36 dB</td>
<td>-39 dB</td>
<td>-50 dB</td>
<td>-65 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>20.6 kg</td>
<td>$3,000</td>
<td>None</td>
</tr>
<tr>
<td>RM Italy BLA600, February 2019</td>
<td>25-40 W</td>
<td>480 W</td>
<td>-56 dB</td>
<td>-36 dB</td>
<td>-56 dB</td>
<td>-53 dB</td>
<td>-59 dB</td>
<td>4 ms</td>
<td>3 ms</td>
<td>21.5 kg</td>
<td>$2,499</td>
<td>www.d symptomengineering.com</td>
</tr>
<tr>
<td>Yaesu VL-1000, January 2002</td>
<td>40 W</td>
<td>1000 W</td>
<td>-60 dB</td>
<td>-32 dB</td>
<td>-44 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>35.4 kg</td>
<td>$4,000</td>
<td>www.yaesu.com</td>
<td></td>
</tr>
<tr>
<td>Ameritron ALS-600, March 2005</td>
<td>100 W</td>
<td>400 W</td>
<td>-49 dB</td>
<td>-30 dB</td>
<td>-40 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>10.2 kg</td>
<td>$1,428</td>
<td>www.ameritron.com</td>
<td></td>
</tr>
<tr>
<td>Ten-Tec Titan III, March 2004</td>
<td>75 W</td>
<td>1500 W</td>
<td>-43 dB</td>
<td>-30 dB</td>
<td>-37 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>38.1 kg</td>
<td>$3,565</td>
<td>www.tentec.com</td>
<td></td>
</tr>
<tr>
<td>TenTec Titan II, September 2001</td>
<td>60 W</td>
<td>1500 W</td>
<td>-43 dB</td>
<td>-29 dB</td>
<td>-37 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>N/M</td>
<td>38.1 kg</td>
<td>$2,990</td>
<td>www.tentec.com</td>
<td></td>
</tr>
<tr>
<td>SGC SG-500, February 2006</td>
<td>50 W</td>
<td>500 W</td>
<td>-49 dB</td>
<td>-28 dB</td>
<td>-48 dB</td>
<td>-49 dB</td>
<td>-53 dB</td>
<td>N/M</td>
<td>N/M</td>
<td>9.5 kg</td>
<td>$1,395</td>
<td>www.sgceurope.com</td>
</tr>
</tbody>
</table>
Blocking gain compression:
When a very strong off channel signal appears at the input to a receiver it is often found that the sensitivity is reduced. The effect arises because the front end amplifiers run into compression as a result of the off channel signal.

This often arises when a receiver and transmitter are run from the same site and the transmitter signal is exceedingly strong. When this occurs it has the effect of suppressing all the other signals trying to pass through the amplifier, giving the effect of a reduction in gain.

Blocking is generally specified as the level of the unwanted signal at a given offset (normally 20 kHz) which will give a 3 dB reduction in gain. A good receiver may be able to withstand signals of about ten milliwatts before this happens.

The blocking specification is now more important than it was many years ago. With the increase in radio communications systems in use, it is quite likely that a radio transmitter will be operating in the close vicinity to a receiver.

If the radio receiver is blocked by the neighbouring transmitter then it can seriously degrade the performance of the overall radio communications system.

Reciprocal mixing dynamic range:
ARRL Lab reports three dynamic range measurements that determine a transceiver’s overall performance.

Along with blocking gain compression dynamic range and two tone third order dynamic range, we must consider RMDR while evaluating how well a receiver hears.

Which of these measurements is the most important factor in comparing receivers depends a lot on how you plan to use that receiver. For hearing weak signals at or near the receiver’s noise floor, receiver noise typically is the limiting factor. For the reception of stronger signals under crowded band conditions, two tone third order DR is the most important number.

To assess a receiver’s ability to perform well in the presence of a single, strong off-channel signal (common within geographical ham radio “clusters” or with another ham on the same block), blocking gain compression DR is usually the dominant factor.

Reciprocal mixing is noise generated in a superheterodyne receiver when noise from the local oscillator (LO) mixes with strong, adjacent signals. All LOs generate some noise on each sideband, and some LOs produce more noise than others.

This sideband noise mixes with the strong, adjacent off-channel signal, and this generates noise at the output of the mixer. This noise can degrade a receiver’s sensitivity and is most notable when a strong signal is just outside the IF passband.

RMDR at 2 kHz spacing is almost always the worst of the dynamic range measurements at 2 kHz spacing that we report in the “Product Review” data table.

3rd order dynamic range:
The difference in decibels between the weakest signal the receiver can handle and the strongest signal the same receiver can handle simultaneously, - without the need of using additional controls of the receiver, manually carried out by the operator - within 20 kHz (wide spaced) and 2 kHz (close in) within the receiver’s passband.

For more information on this important item, written by Rob Sherwood N0GB, please visit this link: http://www.sherweng.com/documents/Barc2008.pdf

3rd order intercept:
This more or less theoretical point, gives a good indication of a receiver’s overall strong signal performance. Third order intercept is related to two-tone third order IMD.

When receiver’s response on desired and undesired signals (within the passband) were plotted in the same graph, the two lines would intersect at a point called the third-order intercept.

ARRL Product Review testing includes Two-Tone IMD results at several signal levels. Two-tone, Third-order Dynamic Range figures comparable to previous reviews are shown on the first line in each group.

The “IP3” column is the calculated Third-order Intercept Point. Second-order intercept points were determined using -97 dBm reference.

Third order two-tone dynamic range values shown are best case. IMD DR depends on band activity and signal strengths. See text and February 2010 QST, page 52, for an explanation.
As from May 2016 you may notice ARRL is no longer publishing third-order intercept point data for receivers. Technology has changed, and most modern receivers do not have a 3:1 ratio between the IMD signal level and the IMD input level. This ratio can be significantly higher or lower than 3:1. Since the IP3 figure is mathematically based on a 3:1 ratio, publication of this data would be meaningless. Instead, pay attention to the three dynamic ranges — IMD, blocking, and reciprocal mixing. The lowest of these three dynamic ranges represents the limiting dynamic range of the receiver.

Transmit 3rd and 9th order IMD:
All measurements in dB are below PEP output, except note 1. Transmit two-tone intermodulation distortion, or two-tone IMD, is a measure of spurious output close to the desired audio of a transmitter being operated in SSB mode. This spurious output is often created in the audio stages of a transceiver, but any amplification stage can contribute.**

If you have ever heard someone causing "splatter", the noisy audio that extends beyond a normal 3 kHz nominal SSB bandwidth, then you have heard the effects of transmit IMD. Frequencies close to the transmit signal are affected the most, but depending on the amount of IMD, large portions of the band can suffer from one poor transmitter.**

Pure Signal = Pre Distortion

Transmit phase noise:
As from May 2016, ARRL introduces several changes to the Key Measurements Summary chart for HF transceivers. ARRL has added bars for transmitted phase noise, which are important parameters of transmission quality. In addition to transmitted intermodulation distortion (IMD) products on SSB.

Over the past decade, we have seen substantial improvements in receiver technology in terms of dynamic range — the ability to perform well in a band crowded with strong signals. However, the best receiver cannot remove interference created by the poor transmission quality of an adjacent signal. High levels of IMD products caused by poor transmitter design or improper adjustment causes SSB splatter on both sides of the intended transmitted spectrum, interfering with others on nearby frequencies. High levels of transmitted phase noise add to the background noise level, masking signals that would normally be audible.

Transmit keying bandwidth:
As from May 2016, ARRL introduces several changes to the Key Measurements Summary chart for HF transceivers. ARRL has added bars for transmitted CW keying sidebands, which are important parameters of transmission quality. The ranges for these new Key Measurements were determined from data of 30 transceivers tested from 2008 to the present.

The transmitter Key Measurements give an indication of the overall cleanliness of the transmitter. As with the receiver dynamic range measurements, more detailed information is available in the accompanying table of tests performed in the ARRL Lab. ARRL will also continue to publish the detailed plots showing keying waveform, keying sidebands, and transmitted phase noise.

Note that high keying sideband levels are mainly caused by little or no rise and/or fall time (<1 millisecond) on the keying waveform. A transmitter with a 1 millisecond of rise and/or fall time will create key clicks and keying sidebands that are 35 dB down and 500 Hz away from the carrier and will likely interfere with neighboring stations.

The Lab tests transceivers with default settings, but some radios that are very clean at default settings can be adjusted for rise/fall times that increase the keying sidebands significantly. Strong keying CW sidebands from an adjacent transmitter can cause a thumping sound in the speaker, with or without key clicks.

TX/RX turnaround time:
The time after PTT release, to 50% of the audio output.

RX/TX turnaround time (TX delay) SSB:
The time before RF leaving the transceiver

For more information (including what the numbers really mean) please read ARRL’s QST Magazine August 2004 and January 2006 very interesting articles, and the ARRL Lab Test Procedures Manual, available at the ARRL website www.arrl.org.

Version May 12 2019
Please send me an e-mail (to: hans at pa0q dot nl) if you have corrections, remarks, etc.

Visit my website on www.pa0q.nl (redirect page of www.remeeus.eu)

Disclaimer:
The following applies to the pages you are currently viewing. By the pages, you agree to this disclaimer.

This overview is provided for your convenience by Hans PA0Q: It is a summary of measurement figures and gives no indication of the ergonomics, the features and/or the operational characteristics of the transceivers/receivers.

The measurement figures in this overview are from the ARRL Laboratory and published in QST Magazine. These pages are just a non-official overview, where no one should draw any conclusions.

The overview on these pages is written with the utmost care, yet, PA0Q assumes no liability for any inaccuracies in the displayed.

PA0Q is not responsible for the content in this overview, on these pages and/or companies referenced.